1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
| import math from skimage import io, color import numpy as np from tqdm import trange
class Cluster(object): cluster_index = 1
def __init__(self, h, w, l=0, a=0, b=0): self.update(h, w, l, a, b) self.pixels = [] self.no = self.cluster_index Cluster.cluster_index += 1
def update(self, h, w, l, a, b): self.h = h self.w = w self.l = l self.a = a self.b = b
def __str__(self): return "{},{}:{} {} {} ".format(self.h, self.w, self.l, self.a, self.b)
def __repr__(self): return self.__str__()
class SLICProcessor(object): @staticmethod def open_image(path): """ Return: 3D array, row col [LAB] """ rgb = io.imread(path) lab_arr = color.rgb2lab(rgb) return lab_arr
@staticmethod def save_lab_image(path, lab_arr): """ Convert the array to RBG, then save the image :param path: :param lab_arr: :return: """ rgb_arr = color.lab2rgb(lab_arr) io.imsave(path, rgb_arr)
def make_cluster(self, h, w): h = int(h) w = int(w) return Cluster(h, w, self.data[h][w][0], self.data[h][w][1], self.data[h][w][2])
def __init__(self, filename, K, M): self.K = K self.M = M
self.data = self.open_image(filename) self.image_height = self.data.shape[0] self.image_width = self.data.shape[1] self.N = self.image_height * self.image_width self.S = int(math.sqrt(self.N / self.K))
self.clusters = [] self.label = {} self.dis = np.full((self.image_height, self.image_width), np.inf)
def init_clusters(self): h = self.S / 2 w = self.S / 2 while h < self.image_height: while w < self.image_width: self.clusters.append(self.make_cluster(h, w)) w += self.S w = self.S / 2 h += self.S
def get_gradient(self, h, w): if w + 1 >= self.image_width: w = self.image_width - 2 if h + 1 >= self.image_height: h = self.image_height - 2
gradient = self.data[h + 1][w + 1][0] - self.data[h][w][0] + \ self.data[h + 1][w + 1][1] - self.data[h][w][1] + \ self.data[h + 1][w + 1][2] - self.data[h][w][2] return gradient
def move_clusters(self): for cluster in self.clusters: cluster_gradient = self.get_gradient(cluster.h, cluster.w) for dh in range(-1, 2): for dw in range(-1, 2): _h = cluster.h + dh _w = cluster.w + dw new_gradient = self.get_gradient(_h, _w) if new_gradient < cluster_gradient: cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2]) cluster_gradient = new_gradient
def assignment(self): for cluster in self.clusters: for h in range(cluster.h - 2 * self.S, cluster.h + 2 * self.S): if h < 0 or h >= self.image_height: continue for w in range(cluster.w - 2 * self.S, cluster.w + 2 * self.S): if w < 0 or w >= self.image_width: continue L, A, B = self.data[h][w] Dc = math.sqrt( math.pow(L - cluster.l, 2) + math.pow(A - cluster.a, 2) + math.pow(B - cluster.b, 2)) Ds = math.sqrt( math.pow(h - cluster.h, 2) + math.pow(w - cluster.w, 2)) D = math.sqrt(math.pow(Dc / self.M, 2) + math.pow(Ds / self.S, 2)) if D < self.dis[h][w]: if (h, w) not in self.label: self.label[(h, w)] = cluster cluster.pixels.append((h, w)) else: self.label[(h, w)].pixels.remove((h, w)) self.label[(h, w)] = cluster cluster.pixels.append((h, w)) self.dis[h][w] = D
def update_cluster(self): for cluster in self.clusters: sum_h = sum_w = number = 0 for p in cluster.pixels: sum_h += p[0] sum_w += p[1] number += 1 _h = int(sum_h / number) _w = int(sum_w / number) cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2])
def save_current_image(self, name): image_arr = np.copy(self.data) for cluster in self.clusters: for p in cluster.pixels: image_arr[p[0]][p[1]][0] = cluster.l image_arr[p[0]][p[1]][1] = cluster.a image_arr[p[0]][p[1]][2] = cluster.b image_arr[cluster.h][cluster.w][0] = 0 image_arr[cluster.h][cluster.w][1] = 0 image_arr[cluster.h][cluster.w][2] = 0 self.save_lab_image(name, image_arr)
def iterate_10times(self): self.init_clusters() self.move_clusters() for i in trange(10): self.assignment() self.update_cluster() name = 'lenna_M{m}_K{k}_loop{loop}.png'.format(loop=i, m=self.M, k=self.K) self.save_current_image(name)
if __name__ == '__main__': p = SLICProcessor('Lenna.png', 200, 40) p.iterate_10times() p = SLICProcessor('Lenna.png', 300, 40) p.iterate_10times() p = SLICProcessor('Lenna.png', 500, 40) p.iterate_10times() p = SLICProcessor('Lenna.png', 1000, 40) p.iterate_10times() p = SLICProcessor('Lenna.png', 200, 5) p.iterate_10times() p = SLICProcessor('Lenna.png', 300, 5) p.iterate_10times() p = SLICProcessor('Lenna.png', 500, 5) p.iterate_10times() p = SLICProcessor('Lenna.png', 1000, 5) p.iterate_10times()
|